- /*
- * MP3 huffman table selecting and bit counting
- *
- * Copyright (c) 1999-2005 Takehiro TOMINAGA
- * Copyright (c) 2002-2005 Gabriel Bouvigne
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
- * Boston, MA 02111-1307, USA.
- */
-
- /* $Id: takehiro.c,v 1.61.2.1 2005/11/20 14:08:25 bouvigne Exp $ */
-
- #ifdef HAVE_CONFIG_H
- # include <config.h>
- #endif
-
- #include <assert.h>
- #include "util.h"
- #include "l3side.h"
- #include "tables.h"
- #include "quantize_pvt.h"
-
- #ifdef WITH_DMALLOC
- #include <dmalloc.h>
- #endif
-
- static const struct
- {
- const int region0_count;
- const int region1_count;
- } subdv_table[ 23 ] =
- {
- {0, 0}, /* 0 bands */
- {0, 0}, /* 1 bands */
- {0, 0}, /* 2 bands */
- {0, 0}, /* 3 bands */
- {0, 0}, /* 4 bands */
- {0, 1}, /* 5 bands */
- {1, 1}, /* 6 bands */
- {1, 1}, /* 7 bands */
- {1, 2}, /* 8 bands */
- {2, 2}, /* 9 bands */
- {2, 3}, /* 10 bands */
- {2, 3}, /* 11 bands */
- {3, 4}, /* 12 bands */
- {3, 4}, /* 13 bands */
- {3, 4}, /* 14 bands */
- {4, 5}, /* 15 bands */
- {4, 5}, /* 16 bands */
- {4, 6}, /* 17 bands */
- {5, 6}, /* 18 bands */
- {5, 6}, /* 19 bands */
- {5, 7}, /* 20 bands */
- {6, 7}, /* 21 bands */
- {6, 7}, /* 22 bands */
- };
-
-
-
-
-
- /*********************************************************************
- * nonlinear quantization of xr
- * More accurate formula than the ISO formula. Takes into account
- * the fact that we are quantizing xr -> ix, but we want ix^4/3 to be
- * as close as possible to x^4/3. (taking the nearest int would mean
- * ix is as close as possible to xr, which is different.)
- *
- * From Segher Boessenkool <segher@eastsite.nl> 11/1999
- *
- * 09/2000: ASM code removed in favor of IEEE754 hack by Takehiro
- * Tominaga. If you need the ASM code, check CVS circa Aug 2000.
- *
- * 01/2004: Optimizations by Gabriel Bouvigne
- *********************************************************************/
-
-
-
-
-
- void quantize_lines_xrpow_01(int l, FLOAT istep, const FLOAT* xr, int* ix)
- {
- const FLOAT compareval0 = (1.0 - 0.4054)/istep;
-
- assert (l>0);
- l= l>>1;
- while (l--) {
- *(ix++) = (compareval0 > *xr++) ? 0 : 1;
- *(ix++) = (compareval0 > *xr++) ? 0 : 1;
- }
- }
-
-
-
- #ifdef TAKEHIRO_IEEE754_HACK
-
- typedef union {
- float f;
- int i;
- } fi_union;
-
- #define MAGIC_FLOAT (65536*(128))
- #define MAGIC_INT 0x4b000000
-
-
- void quantize_lines_xrpow(int l, FLOAT istep, const FLOAT* xp, int* pi)
- {
- fi_union *fi;
- int remaining;
-
- assert (l>0);
-
- fi = (fi_union *)pi;
-
- l = l>>1;
- remaining = l%2;
- l = l>>1;
- while (l--) {
- double x0 = istep * xp[0];
- double x1 = istep * xp[1];
- double x2 = istep * xp[2];
- double x3 = istep * xp[3];
-
- x0 += MAGIC_FLOAT; fi[0].f = x0;
- x1 += MAGIC_FLOAT; fi[1].f = x1;
- x2 += MAGIC_FLOAT; fi[2].f = x2;
- x3 += MAGIC_FLOAT; fi[3].f = x3;
-
- fi[0].f = x0 + (adj43asm - MAGIC_INT)[fi[0].i];
- fi[1].f = x1 + (adj43asm - MAGIC_INT)[fi[1].i];
- fi[2].f = x2 + (adj43asm - MAGIC_INT)[fi[2].i];
- fi[3].f = x3 + (adj43asm - MAGIC_INT)[fi[3].i];
-
- fi[0].i -= MAGIC_INT;
- fi[1].i -= MAGIC_INT;
- fi[2].i -= MAGIC_INT;
- fi[3].i -= MAGIC_INT;
- fi += 4;
- xp += 4;
- };
- if (remaining) {
- double x0 = istep * xp[0];
- double x1 = istep * xp[1];
-
- x0 += MAGIC_FLOAT; fi[0].f = x0;
- x1 += MAGIC_FLOAT; fi[1].f = x1;
-
- fi[0].f = x0 + (adj43asm - MAGIC_INT)[fi[0].i];
- fi[1].f = x1 + (adj43asm - MAGIC_INT)[fi[1].i];
-
- fi[0].i -= MAGIC_INT;
- fi[1].i -= MAGIC_INT;
- }
-
- }
-
-
- # define ROUNDFAC -0.0946
- void quantize_lines_xrpow_ISO(int l, FLOAT istep, const FLOAT* xp, int* pi)
- {
- fi_union *fi;
- int remaining;
-
- assert (l>0);
-
- fi = (fi_union *)pi;
-
- l = l>>1;
- remaining = l%2;
- l = l>>1;
- while (l--) {
- fi[0].f = istep * xp[0] + (ROUNDFAC + MAGIC_FLOAT);
- fi[1].f = istep * xp[1] + (ROUNDFAC + MAGIC_FLOAT);
- fi[2].f = istep * xp[2] + (ROUNDFAC + MAGIC_FLOAT);
- fi[3].f = istep * xp[3] + (ROUNDFAC + MAGIC_FLOAT);
-
- fi[0].i -= MAGIC_INT;
- fi[1].i -= MAGIC_INT;
- fi[2].i -= MAGIC_INT;
- fi[3].i -= MAGIC_INT;
- fi+=4;
- xp+=4;
- };
- if (remaining) {
- fi[0].f = istep * xp[0] + (ROUNDFAC + MAGIC_FLOAT);
- fi[1].f = istep * xp[1] + (ROUNDFAC + MAGIC_FLOAT);
-
- fi[0].i -= MAGIC_INT;
- fi[1].i -= MAGIC_INT;
- }
-
- }
-
-
-
-
-
-
- #else
-
- /*********************************************************************
- * XRPOW_FTOI is a macro to convert floats to ints.
- * if XRPOW_FTOI(x) = nearest_int(x), then QUANTFAC(x)=adj43asm[x]
- * ROUNDFAC= -0.0946
- *
- * if XRPOW_FTOI(x) = floor(x), then QUANTFAC(x)=asj43[x]
- * ROUNDFAC=0.4054
- *
- * Note: using floor() or (int) is extremely slow. On machines where
- * the TAKEHIRO_IEEE754_HACK code above does not work, it is worthwile
- * to write some ASM for XRPOW_FTOI().
- *********************************************************************/
- #define XRPOW_FTOI(src,dest) ((dest) = (int)(src))
- #define QUANTFAC(rx) adj43[rx]
- #define ROUNDFAC 0.4054
-
-
- void quantize_lines_xrpow(int l, FLOAT istep, const FLOAT* xr, int* ix)
- {
- int remaining;
-
- assert (l>0);
-
- l = l>>1;
- remaining = l%2;
- l = l>>1;
- while (l--) {
- FLOAT x0, x1, x2, x3;
- int rx0, rx1, rx2, rx3;
-
- x0 = *xr++ * istep;
- x1 = *xr++ * istep;
- XRPOW_FTOI(x0, rx0);
- x2 = *xr++ * istep;
- XRPOW_FTOI(x1, rx1);
- x3 = *xr++ * istep;
- XRPOW_FTOI(x2, rx2);
- x0 += QUANTFAC(rx0);
- XRPOW_FTOI(x3, rx3);
- x1 += QUANTFAC(rx1);
- XRPOW_FTOI(x0,*ix++);
- x2 += QUANTFAC(rx2);
- XRPOW_FTOI(x1,*ix++);
- x3 += QUANTFAC(rx3);
- XRPOW_FTOI(x2,*ix++);
- XRPOW_FTOI(x3,*ix++);
- };
- if (remaining) {
- FLOAT x0, x1;
- int rx0, rx1;
-
- x0 = *xr++ * istep;
- x1 = *xr++ * istep;
- XRPOW_FTOI(x0, rx0);
- XRPOW_FTOI(x1, rx1);
- x0 += QUANTFAC(rx0);
- x1 += QUANTFAC(rx1);
- XRPOW_FTOI(x0,*ix++);
- XRPOW_FTOI(x1,*ix++);
- }
-
- }
-
-
-
- void quantize_lines_xrpow_ISO(int l, FLOAT istep, const FLOAT* xr, int* ix)
- {
-
- const FLOAT compareval0 = (1.0 - 0.4054)/istep;
- const FLOAT compareval1 = (2.0 - 0.4054)/istep;
-
- assert (l>0);
-
- /* depending on architecture, it may be worth calculating a few more
- compareval's.
-
- eg. compareval1 = (2.0 - 0.4054)/istep;
- .. and then after the first compare do this ...
- if compareval1>*xr then ix = 1;
-
- On a pentium166, it's only worth doing the one compare (as done here),
- as the second compare becomes more expensive than just calculating
- the value. Architectures with slow FP operations may want to add some
- more comparevals. try it and send your diffs statistically speaking
-
- 73% of all xr*istep values give ix=0
- 16% will give 1
- 4% will give 2
- */
- while (l--) {
- if (compareval0 > *xr) {
- *(ix++) = 0;
- xr++;
- } else if (compareval1 > *xr) {
- *(ix++) = 1;
- xr++;
- } else {
- /* *(ix++) = (int)( istep*(*(xr++)) + 0.4054); */
- XRPOW_FTOI( istep*(*(xr++)) + ROUNDFAC , *(ix++) );
- }
- }
-
- }
-
-
-
-
- #endif
-
-
-
- /*********************************************************************
- * Quantization function
- * This function will select which lines to quantize and call the
- * proper quantization function
- *********************************************************************/
-
- static void quantize_xrpow(const FLOAT *xp, int *pi, FLOAT istep, gr_info * const cod_info, calc_noise_data* prev_noise, lame_internal_flags * const gfc)
- {
- /* quantize on xr^(3/4) instead of xr */
- int sfb;
- int sfbmax;
- int j=0;
- int prev_data_use;
- int *iData;
- int accumulate=0;
- int accumulate01=0;
- int *acc_iData;
- const FLOAT *acc_xp;
-
- iData = pi;
- acc_xp = xp;
- acc_iData = iData;
-
-
- /* Reusing previously computed data does not seems to work if global gain
- is changed. Finding why it behaves this way would allow to use a cache of
- previously computed values (let's 10 cached values per sfb) that would
- probably provide a noticeable speedup*/
- prev_data_use = (prev_noise &&
- (cod_info->global_gain == prev_noise->global_gain));
-
- if (cod_info->block_type == SHORT_TYPE)
- sfbmax = 38;
- else
- sfbmax = 21;
-
- for (sfb = 0; sfb <= sfbmax; sfb++) {
- int step = -1;
-
- if (prev_data_use || cod_info->block_type == NORM_TYPE) {
- step =
- cod_info->global_gain
- - ((cod_info->scalefac[sfb] + (cod_info->preflag ? pretab[sfb] : 0))
- << (cod_info->scalefac_scale + 1))
- - cod_info->subblock_gain[cod_info->window[sfb]] * 8;
- }
- assert( cod_info->width[sfb] >= 0 );
- if (prev_data_use && (prev_noise->step[sfb] == step)){
- /* do not recompute this part,
- but compute accumulated lines */
- if (accumulate) {
- gfc->quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
- accumulate = 0;
- }
- if (accumulate01) {
- quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
- accumulate01 = 0;
- }
- } else { /*should compute this part*/
- int l;
- l = cod_info->width[sfb];
-
- if ((j+cod_info->width[sfb])>cod_info->max_nonzero_coeff) {
- /*do not compute upper zero part*/
- int usefullsize;
- usefullsize = cod_info->max_nonzero_coeff - j +1;
- memset(&pi[cod_info->max_nonzero_coeff],0,
- sizeof(int)*(576-cod_info->max_nonzero_coeff));
- l = usefullsize;
-
- if (l<0) {
- l = 0;
- }
-
- /* no need to compute higher sfb values */
- sfb = sfbmax + 1;
- }
-
- /*accumulate lines to quantize*/
- if (!accumulate && !accumulate01) {
- acc_iData = iData;
- acc_xp = xp;
- }
- if (prev_noise &&
- prev_noise->sfb_count1 > 0 &&
- sfb >= prev_noise->sfb_count1 &&
- prev_noise->step[sfb] > 0 &&
- step >= prev_noise->step[sfb]) {
-
- if (accumulate) {
- gfc->quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
- accumulate = 0;
- acc_iData = iData;
- acc_xp = xp;
- }
- accumulate01 += l;
- } else {
- if (accumulate01) {
- quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
- accumulate01 = 0;
- acc_iData = iData;
- acc_xp = xp;
- }
- accumulate += l;
- }
-
- if ( l <= 0 ) {
- /* rh: 20040215
- * may happen due to "prev_data_use" optimization
- */
- if (accumulate01) {
- quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
- accumulate01 = 0;
- }
- if (accumulate) {
- gfc->quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
- accumulate = 0;
- }
-
- break; /* ends for-loop */
- }
- }
- if (sfb <= sfbmax) {
- iData += cod_info->width[sfb];
- xp += cod_info->width[sfb];
- j += cod_info->width[sfb];
- }
- }
- if (accumulate) { /*last data part*/
- gfc->quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
- accumulate = 0;
- }
- if (accumulate01) { /*last data part*/
- quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
- accumulate01 = 0;
- }
-
- }
-
-
-
-
- void quantize_init (lame_internal_flags * const gfc)
- {
- if (gfc->quantization)
- gfc->quantize_lines_xrpow = quantize_lines_xrpow;
- else
- gfc->quantize_lines_xrpow = quantize_lines_xrpow_ISO;
- }
-
-
-
-
-
- /*************************************************************************/
- /* ix_max */
- /*************************************************************************/
-
- int
- ix_max(const int *ix, const int *end)
- {
- int max1 = 0, max2 = 0;
-
- do {
- int x1 = *ix++;
- int x2 = *ix++;
- if (max1 < x1)
- max1 = x1;
-
- if (max2 < x2)
- max2 = x2;
- } while (ix < end);
- if (max1 < max2)
- max1 = max2;
- return max1;
- }
-
-
-
-
-
-
-
-
- int
- count_bit_ESC(
- const int * ix,
- const int * const end,
- int t1,
- const int t2,
- int * const s )
- {
- /* ESC-table is used */
- int linbits = ht[t1].xlen * 65536 + ht[t2].xlen;
- int sum = 0, sum2;
-
- do {
- int x = *ix++;
- int y = *ix++;
-
- if (x != 0) {
- if (x > 14) {
- x = 15;
- sum += linbits;
- }
- x *= 16;
- }
-
- if (y != 0) {
- if (y > 14) {
- y = 15;
- sum += linbits;
- }
- x += y;
- }
-
- sum += largetbl[x];
- } while (ix < end);
-
- sum2 = sum & 0xffff;
- sum >>= 16;
-
- if (sum > sum2) {
- sum = sum2;
- t1 = t2;
- }
-
- *s += sum;
- return t1;
- }
-
-
- inline static int
- count_bit_noESC(const int * ix, const int * const end, int * const s)
- {
- /* No ESC-words */
- int sum1 = 0;
- const char *hlen1 = ht[1].hlen;
-
- do {
- int x = ix[0] * 2 + ix[1];
- ix += 2;
- sum1 += hlen1[x];
- } while (ix < end);
-
- *s += sum1;
- return 1;
- }
-
-
-
- inline static int
- count_bit_noESC_from2(
- const int * ix,
- const int * const end,
- int t1,
- int * const s )
- {
- /* No ESC-words */
- unsigned int sum = 0, sum2;
- const int xlen = ht[t1].xlen;
- const unsigned int *hlen;
- if (t1 == 2)
- hlen = table23;
- else
- hlen = table56;
-
- do {
- int x = ix[0] * xlen + ix[1];
- ix += 2;
- sum += hlen[x];
- } while (ix < end);
-
- sum2 = sum & 0xffff;
- sum >>= 16;
-
- if (sum > sum2) {
- sum = sum2;
- t1++;
- }
-
- *s += sum;
- return t1;
- }
-
-
- inline static int
- count_bit_noESC_from3(
- const int * ix,
- const int * const end,
- int t1,
- int * const s )
- {
- /* No ESC-words */
- int sum1 = 0;
- int sum2 = 0;
- int sum3 = 0;
- const int xlen = ht[t1].xlen;
- const char *hlen1 = ht[t1].hlen;
- const char *hlen2 = ht[t1+1].hlen;
- const char *hlen3 = ht[t1+2].hlen;
- int t;
-
- do {
- int x = ix[0] * xlen + ix[1];
- ix += 2;
- sum1 += hlen1[x];
- sum2 += hlen2[x];
- sum3 += hlen3[x];
- } while (ix < end);
-
- t = t1;
- if (sum1 > sum2) {
- sum1 = sum2;
- t++;
- }
- if (sum1 > sum3) {
- sum1 = sum3;
- t = t1+2;
- }
- *s += sum1;
-
- return t;
- }
-
-
- /*************************************************************************/
- /* choose table */
- /*************************************************************************/
-
- /*
- Choose the Huffman table that will encode ix[begin..end] with
- the fewest bits.
-
- Note: This code contains knowledge about the sizes and characteristics
- of the Huffman tables as defined in the IS (Table B.7), and will not work
- with any arbitrary tables.
- */
-
- static int choose_table_nonMMX(
- const int * ix,
- const int * const end,
- int * const s )
- {
- int max;
- int choice, choice2;
- static const int huf_tbl_noESC[] = {
- 1, 2, 5, 7, 7,10,10,13,13,13,13,13,13,13,13
- };
-
- max = ix_max(ix, end);
-
- switch (max) {
- case 0:
- return max;
-
- case 1:
- return count_bit_noESC(ix, end, s);
-
- case 2:
- case 3:
- return count_bit_noESC_from2(ix, end, huf_tbl_noESC[max - 1], s);
-
- case 4: case 5: case 6:
- case 7: case 8: case 9:
- case 10: case 11: case 12:
- case 13: case 14: case 15:
- return count_bit_noESC_from3(ix, end, huf_tbl_noESC[max - 1], s);
-
- default:
- /* try tables with linbits */
- if (max > IXMAX_VAL) {
- *s = LARGE_BITS;
- return -1;
- }
- max -= 15;
- for (choice2 = 24; choice2 < 32; choice2++) {
- if (ht[choice2].linmax >= max) {
- break;
- }
- }
-
- for (choice = choice2 - 8; choice < 24; choice++) {
- if (ht[choice].linmax >= max) {
- break;
- }
- }
- return count_bit_ESC(ix, end, choice, choice2, s);
- }
- }
-
-
-
- /*************************************************************************/
- /* count_bit */
- /*************************************************************************/
- int noquant_count_bits(
- lame_internal_flags * const gfc,
- gr_info * const gi,
- calc_noise_data* prev_noise)
- {
- int bits = 0;
- int i, a1, a2;
- int *const ix = gi->l3_enc;
-
- i = Min(576, ((gi->max_nonzero_coeff+2)>>1)<<1);
-
- if (prev_noise)
- prev_noise->sfb_count1 = 0;
-
- /* Determine count1 region */
- for (; i > 1; i -= 2)
- if (ix[i - 1] | ix[i - 2])
- break;
- gi->count1 = i;
-
- /* Determines the number of bits to encode the quadruples. */
- a1 = a2 = 0;
- for (; i > 3; i -= 4) {
- int p;
- /* hack to check if all values <= 1 */
- if ((unsigned int)(ix[i-1] | ix[i-2] | ix[i-3] | ix[i-4]) > 1)
- break;
-
- p = ((ix[i-4] * 2 + ix[i-3]) * 2 + ix[i-2]) * 2 + ix[i-1];
- a1 += t32l[p];
- a2 += t33l[p];
- }
-
- bits = a1;
- gi->count1table_select = 0;
- if (a1 > a2) {
- bits = a2;
- gi->count1table_select = 1;
- }
-
- gi->count1bits = bits;
- gi->big_values = i;
- if (i == 0)
- return bits;
-
- if (gi->block_type == SHORT_TYPE) {
- a1=3*gfc->scalefac_band.s[3];
- if (a1 > gi->big_values) a1 = gi->big_values;
- a2 = gi->big_values;
-
- }else if (gi->block_type == NORM_TYPE) {
- assert(i <= 576); /* bv_scf has 576 entries (0..575) */
- a1 = gi->region0_count = gfc->bv_scf[i-2];
- a2 = gi->region1_count = gfc->bv_scf[i-1];
-
- assert(a1+a2+2 < SBPSY_l);
- a2 = gfc->scalefac_band.l[a1 + a2 + 2];
- a1 = gfc->scalefac_band.l[a1 + 1];
- if (a2 < i)
- gi->table_select[2] = gfc->choose_table(ix + a2, ix + i, &bits);
-
- } else {
- gi->region0_count = 7;
- /*gi->region1_count = SBPSY_l - 7 - 1;*/
- gi->region1_count = SBMAX_l -1 - 7 - 1;
- a1 = gfc->scalefac_band.l[7 + 1];
- a2 = i;
- if (a1 > a2) {
- a1 = a2;
- }
- }
-
-
- /* have to allow for the case when bigvalues < region0 < region1 */
- /* (and region0, region1 are ignored) */
- a1 = Min(a1,i);
- a2 = Min(a2,i);
-
- assert( a1 >= 0 );
- assert( a2 >= 0 );
-
- /* Count the number of bits necessary to code the bigvalues region. */
- if (0 < a1)
- gi->table_select[0] = gfc->choose_table(ix, ix + a1, &bits);
- if (a1 < a2)
- gi->table_select[1] = gfc->choose_table(ix + a1, ix + a2, &bits);
- if (gfc->use_best_huffman == 2) {
- gi->part2_3_length = bits;
- best_huffman_divide (gfc, gi);
- bits = gi->part2_3_length;
- }
-
-
- if (prev_noise) {
- if (gi->block_type == NORM_TYPE) {
- int line = 0;
- int sfb = 0;
- while (gfc->scalefac_band.l[sfb] < gi->big_values) {
- sfb++;
- }
- prev_noise->sfb_count1 = sfb;
- }
- }
-
- return bits;
- }
-
- int count_bits(
- lame_internal_flags * const gfc,
- const FLOAT * const xr,
- gr_info * const gi,
- calc_noise_data* prev_noise
- )
- {
- int *const ix = gi->l3_enc;
-
- /* since quantize_xrpow uses table lookup, we need to check this first: */
- FLOAT w = (IXMAX_VAL) / IPOW20(gi->global_gain);
-
- if (gi->xrpow_max > w)
- return LARGE_BITS;
-
- quantize_xrpow(xr, ix, IPOW20(gi->global_gain), gi, prev_noise, gfc);
-
- if (gfc->substep_shaping & 2) {
- int sfb, j = 0;
- /* 0.634521682242439 = 0.5946*2**(.5*0.1875) */
- const FLOAT roundfac =
- 0.634521682242439 / IPOW20(gi->global_gain+gi->scalefac_scale);
- for (sfb = 0; sfb < gi->sfbmax; sfb++) {
- int width = gi->width[sfb];
- int l;
- assert( width >= 0 );
- j += width;
- if (!gfc->pseudohalf[sfb])
- continue;
- for (l = -width; l < 0; l++)
- if (xr[j+l] < roundfac)
- ix[j+l] = 0.0;
- }
- }
- return noquant_count_bits(gfc, gi, prev_noise);
- }
- /***********************************************************************
- re-calculate the best scalefac_compress using scfsi
- the saved bits are kept in the bit reservoir.
- **********************************************************************/
-
-
- inline static void
- recalc_divide_init(
- const lame_internal_flags * const gfc,
- gr_info *cod_info,
- int * const ix,
- int r01_bits[],
- int r01_div [],
- int r0_tbl [],
- int r1_tbl [] )
- {
- int r0, r1, bigv, r0t, r1t, bits;
-
- bigv = cod_info->big_values;
-
- for (r0 = 0; r0 <= 7 + 15; r0++) {
- r01_bits[r0] = LARGE_BITS;
- }
-
- for (r0 = 0; r0 < 16; r0++) {
- int a1 = gfc->scalefac_band.l[r0 + 1], r0bits;
- if (a1 >= bigv)
- break;
- r0bits = 0;
- r0t = gfc->choose_table(ix, ix + a1, &r0bits);
-
- for (r1 = 0; r1 < 8; r1++) {
- int a2 = gfc->scalefac_band.l[r0 + r1 + 2];
- if (a2 >= bigv)
- break;
-
- bits = r0bits;
- r1t = gfc->choose_table(ix + a1, ix + a2, &bits);
- if (r01_bits[r0 + r1] > bits) {
- r01_bits[r0 + r1] = bits;
- r01_div[r0 + r1] = r0;
- r0_tbl[r0 + r1] = r0t;
- r1_tbl[r0 + r1] = r1t;
- }
- }
- }
- }
-
- inline static void
- recalc_divide_sub(
- const lame_internal_flags * const gfc,
- const gr_info *cod_info2,
- gr_info * const gi,
- const int * const ix,
- const int r01_bits[],
- const int r01_div [],
- const int r0_tbl [],
- const int r1_tbl [] )
- {
- int bits, r2, a2, bigv, r2t;
-
- bigv = cod_info2->big_values;
-
- for (r2 = 2; r2 < SBMAX_l + 1; r2++) {
- a2 = gfc->scalefac_band.l[r2];
- if (a2 >= bigv)
- break;
-
- bits = r01_bits[r2 - 2] + cod_info2->count1bits;
- if (gi->part2_3_length <= bits)
- break;
-
- r2t = gfc->choose_table(ix + a2, ix + bigv, &bits);
- if (gi->part2_3_length <= bits)
- continue;
-
- memcpy(gi, cod_info2, sizeof(gr_info));
- gi->part2_3_length = bits;
- gi->region0_count = r01_div[r2 - 2];
- gi->region1_count = r2 - 2 - r01_div[r2 - 2];
- gi->table_select[0] = r0_tbl[r2 - 2];
- gi->table_select[1] = r1_tbl[r2 - 2];
- gi->table_select[2] = r2t;
- }
- }
-
-
-
-
- void best_huffman_divide(
- const lame_internal_flags * const gfc,
- gr_info * const gi)
- {
- int i, a1, a2;
- gr_info cod_info2;
- int * const ix = gi->l3_enc;
-
- int r01_bits[7 + 15 + 1];
- int r01_div[7 + 15 + 1];
- int r0_tbl[7 + 15 + 1];
- int r1_tbl[7 + 15 + 1];
-
-
- /* SHORT BLOCK stuff fails for MPEG2 */
- if (gi->block_type == SHORT_TYPE && gfc->mode_gr==1)
- return;
-
-
- memcpy(&cod_info2, gi, sizeof(gr_info));
- if (gi->block_type == NORM_TYPE) {
- recalc_divide_init(gfc, gi, ix, r01_bits,r01_div,r0_tbl,r1_tbl);
- recalc_divide_sub(gfc, &cod_info2, gi, ix, r01_bits,r01_div,r0_tbl,r1_tbl);
- }
-
- i = cod_info2.big_values;
- if (i == 0 || (unsigned int)(ix[i-2] | ix[i-1]) > 1)
- return;
-
- i = gi->count1 + 2;
- if (i > 576)
- return;
-
- /* Determines the number of bits to encode the quadruples. */
- memcpy(&cod_info2, gi, sizeof(gr_info));
- cod_info2.count1 = i;
- a1 = a2 = 0;
-
- assert(i <= 576);
-
- for (; i > cod_info2.big_values; i -= 4) {
- int p = ((ix[i-4] * 2 + ix[i-3]) * 2 + ix[i-2]) * 2 + ix[i-1];
- a1 += t32l[p];
- a2 += t33l[p];
- }
- cod_info2.big_values = i;
-
- cod_info2.count1table_select = 0;
- if (a1 > a2) {
- a1 = a2;
- cod_info2.count1table_select = 1;
- }
-
- cod_info2.count1bits = a1;
-
- if (cod_info2.block_type == NORM_TYPE)
- recalc_divide_sub(gfc, &cod_info2, gi, ix, r01_bits,r01_div,r0_tbl,r1_tbl);
- else {
- /* Count the number of bits necessary to code the bigvalues region. */
- cod_info2.part2_3_length = a1;
- a1 = gfc->scalefac_band.l[7 + 1];
- if (a1 > i) {
- a1 = i;
- }
- if (a1 > 0)
- cod_info2.table_select[0] =
- gfc->choose_table(ix, ix + a1, (int *)&cod_info2.part2_3_length);
- if (i > a1)
- cod_info2.table_select[1] =
- gfc->choose_table(ix + a1, ix + i, (int *)&cod_info2.part2_3_length);
- if (gi->part2_3_length > cod_info2.part2_3_length)
- memcpy(gi, &cod_info2, sizeof(gr_info));
- }
- }
-
- static const int slen1_n[16] = { 1, 1, 1, 1, 8, 2, 2, 2, 4, 4, 4, 8, 8, 8,16,16 };
- static const int slen2_n[16] = { 1, 2, 4, 8, 1, 2, 4, 8, 2, 4, 8, 2, 4, 8, 4, 8 };
- const int slen1_tab [16] = { 0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4 };
- const int slen2_tab [16] = { 0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3 };
-
- static void
- scfsi_calc(int ch,
- III_side_info_t *l3_side)
- {
- int i, s1, s2, c1, c2;
- int sfb;
- gr_info *gi = &l3_side->tt[1][ch];
- gr_info *g0 = &l3_side->tt[0][ch];
-
- for (i = 0; i < (sizeof(scfsi_band) / sizeof(int)) - 1; i++) {
- for (sfb = scfsi_band[i]; sfb < scfsi_band[i + 1]; sfb++) {
- if (g0->scalefac[sfb] != gi->scalefac[sfb]
- && gi->scalefac[sfb] >= 0)
- break;
- }
- if (sfb == scfsi_band[i + 1]) {
- for (sfb = scfsi_band[i]; sfb < scfsi_band[i + 1]; sfb++) {
- gi->scalefac[sfb] = -1;
- }
- l3_side->scfsi[ch][i] = 1;
- }
- }
-
- s1 = c1 = 0;
- for (sfb = 0; sfb < 11; sfb++) {
- if (gi->scalefac[sfb] == -1)
- continue;
- c1++;
- if (s1 < gi->scalefac[sfb])
- s1 = gi->scalefac[sfb];
- }
-
- s2 = c2 = 0;
- for (; sfb < SBPSY_l; sfb++) {
- if (gi->scalefac[sfb] == -1)
- continue;
- c2++;
- if (s2 < gi->scalefac[sfb])
- s2 = gi->scalefac[sfb];
- }
-
- for (i = 0; i < 16; i++) {
- if (s1 < slen1_n[i] && s2 < slen2_n[i]) {
- int c = slen1_tab[i] * c1 + slen2_tab[i] * c2;
- if (gi->part2_length > c) {
- gi->part2_length = c;
- gi->scalefac_compress = i;
- }
- }
- }
- }
-
- /*
- Find the optimal way to store the scalefactors.
- Only call this routine after final scalefactors have been
- chosen and the channel/granule will not be re-encoded.
- */
- void best_scalefac_store(
- const lame_internal_flags *gfc,
- const int gr,
- const int ch,
- III_side_info_t * const l3_side)
- {
- /* use scalefac_scale if we can */
- gr_info *gi = &l3_side->tt[gr][ch];
- int sfb,i,j,l;
- int recalc = 0;
-
- /* remove scalefacs from bands with ix=0. This idea comes
- * from the AAC ISO docs. added mt 3/00 */
- /* check if l3_enc=0 */
- j = 0;
- for ( sfb = 0; sfb < gi->sfbmax; sfb++ ) {
- int width = gi->width[sfb];
- assert( width >= 0 );
- j += width;
- for (l = -width; l < 0; l++) {
- if (gi->l3_enc[l+j]!=0)
- break;
- }
- if (l==0)
- gi->scalefac[sfb] = recalc = -2; /* anything goes. */
- /* only best_scalefac_store and calc_scfsi
- * know--and only they should know--about the magic number -2.
- */
- }
-
- if (!gi->scalefac_scale && !gi->preflag) {
- int s = 0;
- for (sfb = 0; sfb < gi->sfbmax; sfb++)
- if (gi->scalefac[sfb] > 0)
- s |= gi->scalefac[sfb];
-
- if (!(s & 1) && s != 0) {
- for (sfb = 0; sfb < gi->sfbmax; sfb++)
- if (gi->scalefac[sfb] > 0)
- gi->scalefac[sfb] >>= 1;
-
- gi->scalefac_scale = recalc = 1;
- }
- }
-
- if (!gi->preflag && gi->block_type != SHORT_TYPE && gfc->mode_gr==2) {
- for (sfb = 11; sfb < SBPSY_l; sfb++)
- if (gi->scalefac[sfb] < pretab[sfb] && gi->scalefac[sfb] != -2)
- break;
- if (sfb == SBPSY_l) {
- for (sfb = 11; sfb < SBPSY_l; sfb++)
- if (gi->scalefac[sfb] > 0)
- gi->scalefac[sfb] -= pretab[sfb];
-
- gi->preflag = recalc = 1;
- }
- }
-
- for ( i = 0; i < 4; i++ )
- l3_side->scfsi[ch][i] = 0;
-
- if (gfc->mode_gr==2 && gr == 1
- && l3_side->tt[0][ch].block_type != SHORT_TYPE
- && l3_side->tt[1][ch].block_type != SHORT_TYPE) {
- scfsi_calc(ch, l3_side);
- recalc = 0;
- }
- for ( sfb = 0; sfb < gi->sfbmax; sfb++ ) {
- if ( gi->scalefac[sfb] == -2 ) {
- gi->scalefac[sfb] = 0; /* if anything goes, then 0 is a good choice */
- }
- }
- if (recalc) {
- if (gfc->mode_gr == 2) {
- scale_bitcount(gi);
- } else {
- scale_bitcount_lsf(gfc, gi);
- }
- }
- }
-
-
- #ifndef NDEBUG
- static int all_scalefactors_not_negative( int const* scalefac, int n )
- {
- int i;
- for ( i = 0; i < n; ++i ) {
- if ( scalefac[i] < 0 ) return 0;
- }
- return 1;
- }
- #endif
-
-
- /* number of bits used to encode scalefacs */
-
- /* 18*slen1_tab[i] + 18*slen2_tab[i] */
- static const int scale_short[16] = {
- 0, 18, 36, 54, 54, 36, 54, 72, 54, 72, 90, 72, 90, 108, 108, 126 };
-
- /* 17*slen1_tab[i] + 18*slen2_tab[i] */
- static const int scale_mixed[16] = {
- 0, 18, 36, 54, 51, 35, 53, 71, 52, 70, 88, 69, 87, 105, 104, 122 };
-
- /* 11*slen1_tab[i] + 10*slen2_tab[i] */
- static const int scale_long[16] = {
- 0, 10, 20, 30, 33, 21, 31, 41, 32, 42, 52, 43, 53, 63, 64, 74 };
-
-
- /*************************************************************************/
- /* scale_bitcount */
- /*************************************************************************/
-
- /* Also calculates the number of bits necessary to code the scalefactors. */
-
- int scale_bitcount(gr_info * const cod_info)
- {
- int k, sfb, max_slen1 = 0, max_slen2 = 0;
-
- /* maximum values */
- const int *tab;
- int *scalefac = cod_info->scalefac;
-
- assert( all_scalefactors_not_negative( scalefac, cod_info->sfbmax ) );
-
- if ( cod_info->block_type == SHORT_TYPE ) {
- tab = scale_short;
- if (cod_info->mixed_block_flag)
- tab = scale_mixed;
- }
- else
- { /* block_type == 1,2,or 3 */
- tab = scale_long;
- if (!cod_info->preflag) {
- for ( sfb = 11; sfb < SBPSY_l; sfb++ )
- if (scalefac[sfb] < pretab[sfb])
- break;
-
- if (sfb == SBPSY_l) {
- cod_info->preflag = 1;
- for ( sfb = 11; sfb < SBPSY_l; sfb++ )
- scalefac[sfb] -= pretab[sfb];
- }
- }
- }
-
- for (sfb = 0; sfb < cod_info->sfbdivide; sfb++)
- if (max_slen1 < scalefac[sfb])
- max_slen1 = scalefac[sfb];
-
- for (; sfb < cod_info->sfbmax; sfb++)
- if (max_slen2 < scalefac[sfb])
- max_slen2 = scalefac[sfb];
-
- /* from Takehiro TOMINAGA <tominaga@isoternet.org> 10/99
- * loop over *all* posible values of scalefac_compress to find the
- * one which uses the smallest number of bits. ISO would stop
- * at first valid index */
- cod_info->part2_length = LARGE_BITS;
- for ( k = 0; k < 16; k++ ) {
- if (max_slen1 < slen1_n[k] && max_slen2 < slen2_n[k]
- && cod_info->part2_length > tab[k]) {
- cod_info->part2_length=tab[k];
- cod_info->scalefac_compress=k;
- }
- }
- return cod_info->part2_length == LARGE_BITS;
- }
-
-
-
- /*
- table of largest scalefactor values for MPEG2
- */
- static const int max_range_sfac_tab[6][4] =
- {
- { 15, 15, 7, 7},
- { 15, 15, 7, 0},
- { 7, 3, 0, 0},
- { 15, 31, 31, 0},
- { 7, 7, 7, 0},
- { 3, 3, 0, 0}
- };
-
-
-
-
- /*************************************************************************/
- /* scale_bitcount_lsf */
- /*************************************************************************/
-
- /* Also counts the number of bits to encode the scalefacs but for MPEG 2 */
- /* Lower sampling frequencies (24, 22.05 and 16 kHz.) */
-
- /* This is reverse-engineered from section 2.4.3.2 of the MPEG2 IS, */
- /* "Audio Decoding Layer III" */
-
- int scale_bitcount_lsf(const lame_internal_flags *gfc,
- gr_info * const cod_info)
- {
- int table_number, row_in_table, partition, nr_sfb, window, over;
- int i, sfb, max_sfac[ 4 ];
- const int *partition_table;
- int *scalefac = cod_info->scalefac;
-
- /*
- Set partition table. Note that should try to use table one,
- but do not yet...
- */
- if ( cod_info->preflag )
- table_number = 2;
- else
- table_number = 0;
-
- for ( i = 0; i < 4; i++ )
- max_sfac[i] = 0;
-
- if ( cod_info->block_type == SHORT_TYPE )
- {
- row_in_table = 1;
- partition_table = &nr_of_sfb_block[table_number][row_in_table][0];
- for ( sfb = 0, partition = 0; partition < 4; partition++ )
- {
- nr_sfb = partition_table[ partition ] / 3;
- for ( i = 0; i < nr_sfb; i++, sfb++ )
- for ( window = 0; window < 3; window++ )
- if ( scalefac[sfb*3+window] > max_sfac[partition] )
- max_sfac[partition] = scalefac[sfb*3+window];
- }
- }
- else
- {
- row_in_table = 0;
- partition_table = &nr_of_sfb_block[table_number][row_in_table][0];
- for ( sfb = 0, partition = 0; partition < 4; partition++ )
- {
- nr_sfb = partition_table[ partition ];
- for ( i = 0; i < nr_sfb; i++, sfb++ )
- if ( scalefac[sfb] > max_sfac[partition] )
- max_sfac[partition] = scalefac[sfb];
- }
- }
-
- for ( over = 0, partition = 0; partition < 4; partition++ )
- {
- if ( max_sfac[partition] > max_range_sfac_tab[table_number][partition] )
- over++;
- }
- if ( !over )
- {
- /*
- Since no bands have been over-amplified, we can set scalefac_compress
- and slen[] for the formatter
- */
- static const int log2tab[] = { 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4 };
-
- int slen1, slen2, slen3, slen4;
-
- cod_info->sfb_partition_table = nr_of_sfb_block[table_number][row_in_table];
- for ( partition = 0; partition < 4; partition++ )
- cod_info->slen[partition] = log2tab[max_sfac[partition]];
-
- /* set scalefac_compress */
- slen1 = cod_info->slen[ 0 ];
- slen2 = cod_info->slen[ 1 ];
- slen3 = cod_info->slen[ 2 ];
- slen4 = cod_info->slen[ 3 ];
-
- switch ( table_number )
- {
- case 0:
- cod_info->scalefac_compress = (((slen1 * 5) + slen2) << 4)
- + (slen3 << 2)
- + slen4;
- break;
-
- case 1:
- cod_info->scalefac_compress = 400
- + (((slen1 * 5) + slen2) << 2)
- + slen3;
- break;
-
- case 2:
- cod_info->scalefac_compress = 500 + (slen1 * 3) + slen2;
- break;
-
- default:
- ERRORF(gfc,"intensity stereo not implemented yet\n" );
- break;
- }
- }
- #ifdef DEBUG
- if ( over )
- ERRORF(gfc, "---WARNING !! Amplification of some bands over limits\n" );
- #endif
- if (!over) {
- assert( cod_info->sfb_partition_table );
- cod_info->part2_length=0;
- for ( partition = 0; partition < 4; partition++ )
- cod_info->part2_length += cod_info->slen[partition] * cod_info->sfb_partition_table[partition];
- }
- return over;
- }
-
-
-
- void huffman_init(lame_internal_flags * const gfc)
- {
- int i;
-
- gfc->choose_table = choose_table_nonMMX;
-
- #ifdef MMX_choose_table
- if (gfc->CPU_features.MMX) {
- extern int choose_table_MMX(const int *ix, const int * const end, int * const s);
- gfc->choose_table = choose_table_MMX;
- }
- #endif
-
- for (i = 2; i <= 576; i += 2) {
- int scfb_anz = 0, index;
- while (gfc->scalefac_band.l[++scfb_anz] < i)
- ;
-
- index = subdv_table[scfb_anz].region0_count;
- while (gfc->scalefac_band.l[index + 1] > i)
- index--;
-
- if (index < 0) {
- /* this is an indication that everything is going to
- be encoded as region0: bigvalues < region0 < region1
- so lets set region0, region1 to some value larger
- than bigvalues */
- index = subdv_table[scfb_anz].region0_count;
- }
-
- gfc->bv_scf[i-2] = index;
-
- index = subdv_table[scfb_anz].region1_count;
- while (gfc->scalefac_band.l[index + gfc->bv_scf[i-2] + 2] > i)
- index--;
-
- if (index < 0) {
- index = subdv_table[scfb_anz].region1_count;
- }
-
- gfc->bv_scf[i-1] = index;
- }
- }
-