/* * LAME MP3 encoding engine * * Copyright (c) 1999 Mark Taylor * Copyright (c) 2000-2002 Takehiro Tominaga * Copyright (c) 2000-2005 Robert Hegemann * Copyright (c) 2001 Gabriel Bouvigne * Copyright (c) 2001 John Dahlstrom * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /* $Id: encoder.c,v 1.90.2.1 2005/11/20 14:08:24 bouvigne Exp $ */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <assert.h> #include "lame.h" #include "util.h" #include "newmdct.h" #include "psymodel.h" #include "quantize.h" #include "quantize_pvt.h" #include "bitstream.h" #include "VbrTag.h" #include "vbrquantize.h" #ifdef WITH_DMALLOC #include <dmalloc.h> #endif /* * auto-adjust of ATH, useful for low volume * Gabriel Bouvigne 3 feb 2001 * * modifies some values in * gfp->internal_flags->ATH * (gfc->ATH) */ static void adjust_ATH(lame_internal_flags * const gfc) { FLOAT gr2_max, max_pow; if (gfc->ATH->use_adjust == 0) { gfc->ATH->adjust = 1.0; /* no adjustment */ return; } /* jd - 2001 mar 12, 27, jun 30 */ /* loudness based on equal loudness curve; */ /* use granule with maximum combined loudness */ max_pow = gfc->loudness_sq[0][0]; gr2_max = gfc->loudness_sq[1][0]; if (gfc->channels_out == 2) { max_pow += gfc->loudness_sq[0][1]; gr2_max += gfc->loudness_sq[1][1]; } else { max_pow += max_pow; gr2_max += gr2_max; } if (gfc->mode_gr == 2) { max_pow = Max(max_pow, gr2_max); } max_pow *= 0.5; /* max_pow approaches 1.0 for full band noise */ /* jd - 2001 mar 31, jun 30 */ /* user tuning of ATH adjustment region */ max_pow *= gfc->ATH->aa_sensitivity_p; /* adjust ATH depending on range of maximum value */ /* jd - 2001 feb27, mar12,20, jun30, jul22 */ /* continuous curves based on approximation */ /* to GB's original values. */ /* For an increase in approximate loudness, */ /* set ATH adjust to adjust_limit immediately */ /* after a delay of one frame. */ /* For a loudness decrease, reduce ATH adjust */ /* towards adjust_limit gradually. */ /* max_pow is a loudness squared or a power. */ if (max_pow > 0.03125) { /* ((1 - 0.000625)/ 31.98) from curve below */ if (gfc->ATH->adjust >= 1.0) { gfc->ATH->adjust = 1.0; } else { /* preceding frame has lower ATH adjust; */ /* ascend only to the preceding adjust_limit */ /* in case there is leading low volume */ if (gfc->ATH->adjust < gfc->ATH->adjust_limit) { gfc->ATH->adjust = gfc->ATH->adjust_limit; } } gfc->ATH->adjust_limit = 1.0; } else { /* adjustment curve */ /* about 32 dB maximum adjust (0.000625) */ FLOAT adj_lim_new = 31.98 * max_pow + 0.000625; if (gfc->ATH->adjust >= adj_lim_new) { /* descend gradually */ gfc->ATH->adjust *= adj_lim_new * 0.075 + 0.925; if (gfc->ATH->adjust < adj_lim_new) { /* stop descent */ gfc->ATH->adjust = adj_lim_new; } } else { /* ascend */ if (gfc->ATH->adjust_limit >= adj_lim_new) { gfc->ATH->adjust = adj_lim_new; } else { /* preceding frame has lower ATH adjust; */ /* ascend only to the preceding adjust_limit */ if (gfc->ATH->adjust < gfc->ATH->adjust_limit) { gfc->ATH->adjust = gfc->ATH->adjust_limit; } } } gfc->ATH->adjust_limit = adj_lim_new; } } /*********************************************************************** * * some simple statistics * * bitrate index 0: free bitrate -> not allowed in VBR mode * : bitrates, kbps depending on MPEG version * bitrate index 15: forbidden * * mode_ext: * 0: LR * 1: LR-i * 2: MS * 3: MS-i * ***********************************************************************/ static void updateStats(lame_internal_flags * const gfc) { int gr, ch; assert(gfc->bitrate_index < 16u); assert(gfc->mode_ext < 4u); /* count bitrate indices */ gfc->bitrate_stereoMode_Hist[gfc->bitrate_index][4]++; gfc->bitrate_stereoMode_Hist[15][4]++; /* count 'em for every mode extension in case of 2 channel encoding */ if (gfc->channels_out == 2) { gfc->bitrate_stereoMode_Hist[gfc->bitrate_index][gfc->mode_ext]++; gfc->bitrate_stereoMode_Hist[15][gfc->mode_ext]++; } for (gr = 0; gr < gfc->mode_gr; ++gr) { for (ch = 0; ch < gfc->channels_out; ++ch) { int bt = gfc->l3_side.tt[gr][ch].block_type; int mf = gfc->l3_side.tt[gr][ch].mixed_block_flag; if (mf) bt = 4; gfc->bitrate_blockType_Hist[gfc->bitrate_index][bt]++; gfc->bitrate_blockType_Hist[gfc->bitrate_index][5]++; gfc->bitrate_blockType_Hist[15][bt]++; gfc->bitrate_blockType_Hist[15][5]++; } } } static void lame_encode_frame_init(lame_global_flags * const gfp, const sample_t * inbuf[2]) { lame_internal_flags *gfc = gfp->internal_flags; int ch, gr; if (gfc->lame_encode_frame_init == 0) { /* prime the MDCT/polyphase filterbank with a short block */ int i, j; sample_t primebuff0[286 + 1152 + 576]; sample_t primebuff1[286 + 1152 + 576]; gfc->lame_encode_frame_init = 1; for (i = 0, j = 0; i < 286 + 576 * (1 + gfc->mode_gr); ++i) { if (i < 576 * gfc->mode_gr) { primebuff0[i] = 0; if (gfc->channels_out == 2) primebuff1[i] = 0; } else { primebuff0[i] = inbuf[0][j]; if (gfc->channels_out == 2) primebuff1[i] = inbuf[1][j]; ++j; } } /* polyphase filtering / mdct */ for (gr = 0; gr < gfc->mode_gr; gr++) { for (ch = 0; ch < gfc->channels_out; ch++) { gfc->l3_side.tt[gr][ch].block_type = SHORT_TYPE; } } mdct_sub48(gfc, primebuff0, primebuff1); /* check FFT will not use a negative starting offset */ #if 576 < FFTOFFSET # error FFTOFFSET greater than 576: FFT uses a negative offset #endif /* check if we have enough data for FFT */ assert(gfc->mf_size >= (BLKSIZE + gfp->framesize - FFTOFFSET)); /* check if we have enough data for polyphase filterbank */ assert(gfc->mf_size >= (512 + gfp->framesize - 32)); } } /************************************************************************ * * encodeframe() Layer 3 * * encode a single frame * ************************************************************************ lame_encode_frame() gr 0 gr 1 inbuf: |--------------|--------------|--------------| Polyphase (18 windows, each shifted 32) gr 0: window1 <----512----> window18 <----512----> gr 1: window1 <----512----> window18 <----512----> MDCT output: |--------------|--------------|--------------| FFT's <---------1024----------> <---------1024--------> inbuf = buffer of PCM data size=MP3 framesize encoder acts on inbuf[ch][0], but output is delayed by MDCTDELAY so the MDCT coefficints are from inbuf[ch][-MDCTDELAY] psy-model FFT has a 1 granule delay, so we feed it data for the next granule. FFT is centered over granule: 224+576+224 So FFT starts at: 576-224-MDCTDELAY MPEG2: FFT ends at: BLKSIZE+576-224-MDCTDELAY (1328) MPEG1: FFT ends at: BLKSIZE+2*576-224-MDCTDELAY (1904) MPEG2: polyphase first window: [0..511] 18th window: [544..1055] (1056) MPEG1: 36th window: [1120..1631] (1632) data needed: 512+framesize-32 A close look newmdct.c shows that the polyphase filterbank only uses data from [0..510] for each window. Perhaps because the window used by the filterbank is zero for the last point, so Takehiro's code doesn't bother to compute with it. FFT starts at 576-224-MDCTDELAY (304) = 576-FFTOFFSET */ typedef FLOAT chgrdata[2][2]; int lame_encode_mp3_frame( /* Output */ lame_global_flags * const gfp, /* Context */ sample_t * inbuf_l, /* Input */ sample_t * inbuf_r, /* Input */ unsigned char *mp3buf, /* Output */ int mp3buf_size) { /* Output */ int mp3count; III_psy_ratio masking_LR[2][2]; /*LR masking & energy */ III_psy_ratio masking_MS[2][2]; /*MS masking & energy */ III_psy_ratio(*masking)[2][2]; /*pointer to selected maskings */ const sample_t *inbuf[2]; lame_internal_flags *gfc = gfp->internal_flags; FLOAT tot_ener[2][4]; FLOAT ms_ener_ratio[2] = { .5, .5 }; chgrdata pe, pe_MS; chgrdata *pe_use; int ch, gr; FLOAT ms_ratio_next = 0.; FLOAT ms_ratio_prev = 0.; inbuf[0] = inbuf_l; inbuf[1] = inbuf_r; if (gfc->lame_encode_frame_init == 0) { /*first run? */ lame_encode_frame_init(gfp, inbuf); } /********************** padding *****************************/ /* padding method as described in * "MPEG-Layer3 / Bitstream Syntax and Decoding" * by Martin Sieler, Ralph Sperschneider * * note: there is no padding for the very first frame * * Robert Hegemann 2000-06-22 */ gfc->padding = FALSE; if ((gfc->slot_lag -= gfc->frac_SpF) < 0) { gfc->slot_lag += gfp->out_samplerate; gfc->padding = TRUE; } /**************************************** * Stage 1: psychoacoustic model * ****************************************/ if (gfc->psymodel) { /* psychoacoustic model * psy model has a 1 granule (576) delay that we must compensate for * (mt 6/99). */ int ret; const sample_t *bufp[2]; /* address of beginning of left & right granule */ int blocktype[2]; ms_ratio_prev = gfc->ms_ratio[gfc->mode_gr - 1]; for (gr = 0; gr < gfc->mode_gr; gr++) { for (ch = 0; ch < gfc->channels_out; ch++) bufp[ch] = &inbuf[ch][576 + gr * 576 - FFTOFFSET]; if (gfp->psymodel == PSY_NSPSYTUNE) { ret = L3psycho_anal_ns(gfp, bufp, gr, &gfc->ms_ratio[gr], &ms_ratio_next, masking_LR, masking_MS, pe[gr], pe_MS[gr], tot_ener[gr], blocktype); } else { ret = L3psycho_anal(gfp, bufp, gr, &gfc->ms_ratio[gr], &ms_ratio_next, masking_LR, masking_MS, pe[gr], pe_MS[gr], tot_ener[gr], blocktype); } if (ret != 0) return -4; if (gfp->mode == JOINT_STEREO) { ms_ener_ratio[gr] = tot_ener[gr][2] + tot_ener[gr][3]; if (ms_ener_ratio[gr] > 0) ms_ener_ratio[gr] = tot_ener[gr][3] / ms_ener_ratio[gr]; } /* block type flags */ for (ch = 0; ch < gfc->channels_out; ch++) { gr_info *cod_info = &gfc->l3_side.tt[gr][ch]; cod_info->block_type = blocktype[ch]; cod_info->mixed_block_flag = 0; } } } else { /*no psy model */ memset((char *) masking_LR, 0, sizeof(masking_LR)); memset((char *) masking_MS, 0, sizeof(masking_MS)); for (gr = 0; gr < gfc->mode_gr; gr++) for (ch = 0; ch < gfc->channels_out; ch++) { gfc->l3_side.tt[gr][ch].block_type = NORM_TYPE; gfc->l3_side.tt[gr][ch].mixed_block_flag = 0; pe_MS[gr][ch] = pe[gr][ch] = 700; } } /* auto-adjust of ATH, useful for low volume */ adjust_ATH(gfc); /**************************************** * Stage 2: MDCT * ****************************************/ /* polyphase filtering / mdct */ mdct_sub48(gfc, inbuf[0], inbuf[1]); /**************************************** * Stage 3: MS/LR decision * ****************************************/ /* Here will be selected MS or LR coding of the 2 stereo channels */ gfc->mode_ext = MPG_MD_LR_LR; if (gfp->force_ms) { gfc->mode_ext = MPG_MD_MS_LR; } else if (gfp->mode == JOINT_STEREO) { int check_ms_stereo = 1; /* ms_ratio = is scaled, for historical reasons, to look like a ratio of side_channel / total. 0 = signal is 100% mono .5 = L & R uncorrelated */ /* [0] and [1] are the results for the two granules in MPEG-1, * in MPEG-2 it's only a faked averaging of the same value * _prev is the value of the last granule of the previous frame * _next is the value of the first granule of the next frame */ if (gfp->psymodel == PSY_GPSYCHO) { FLOAT ms_ratio_ave1; FLOAT ms_ratio_ave2; FLOAT threshold1 = 0.35; FLOAT threshold2 = 0.45; /* take an average */ if (gfc->mode_gr == 1) { /* MPEG2 - no second granule */ ms_ratio_ave1 = 0.33 * (gfc->ms_ratio[0] + ms_ratio_prev + ms_ratio_next); ms_ratio_ave2 = gfc->ms_ratio[0]; } else { ms_ratio_ave1 = 0.25 * (gfc->ms_ratio[0] + gfc->ms_ratio[1] + ms_ratio_prev + ms_ratio_next); ms_ratio_ave2 = 0.50 * (gfc->ms_ratio[0] + gfc->ms_ratio[1]); } if (ms_ratio_ave1 >= threshold1 || ms_ratio_ave2 >= threshold2) check_ms_stereo = 0; } if (check_ms_stereo) { FLOAT sum_pe_MS = 0; FLOAT sum_pe_LR = 0; for (gr = 0; gr < gfc->mode_gr; gr++) { for (ch = 0; ch < gfc->channels_out; ch++) { sum_pe_MS += pe_MS[gr][ch]; sum_pe_LR += pe[gr][ch]; } } /* based on PE: M/S coding would not use much more bits than L/R */ if (((gfp->psymodel == PSY_GPSYCHO) && sum_pe_MS <= 1.07 * sum_pe_LR) || ((gfp->psymodel == PSY_NSPSYTUNE) && sum_pe_MS <= 1.00 * sum_pe_LR)) { gr_info *gi0 = &gfc->l3_side.tt[0][0]; gr_info *gi1 = &gfc->l3_side.tt[gfc->mode_gr - 1][0]; if (gi0[0].block_type == gi0[1].block_type && gi1[0].block_type == gi1[1].block_type) { gfc->mode_ext = MPG_MD_MS_LR; } } } } /* bit and noise allocation */ if (gfc->mode_ext == MPG_MD_MS_LR) { masking = &masking_MS; /* use MS masking */ pe_use = &pe_MS; } else { masking = &masking_LR; /* use LR masking */ pe_use = &pe; } #if defined(HAVE_GTK) /* copy data for MP3 frame analyzer */ if (gfp->analysis && gfc->pinfo != NULL) { for (gr = 0; gr < gfc->mode_gr; gr++) { for (ch = 0; ch < gfc->channels_out; ch++) { gfc->pinfo->ms_ratio[gr] = gfc->ms_ratio[gr]; gfc->pinfo->ms_ener_ratio[gr] = ms_ener_ratio[gr]; gfc->pinfo->blocktype[gr][ch] = gfc->l3_side.tt[gr][ch].block_type; gfc->pinfo->pe[gr][ch] = (*pe_use)[gr][ch]; memcpy(gfc->pinfo->xr[gr][ch], &gfc->l3_side.tt[gr][ch].xr, sizeof(FLOAT) * 576); /* in psymodel, LR and MS data was stored in pinfo. switch to MS data: */ if (gfc->mode_ext == MPG_MD_MS_LR) { gfc->pinfo->ers[gr][ch] = gfc->pinfo->ers[gr][ch + 2]; memcpy(gfc->pinfo->energy[gr][ch], gfc->pinfo->energy[gr][ch + 2], sizeof(gfc->pinfo->energy[gr][ch])); } } } } #endif /**************************************** * Stage 4: quantization loop * ****************************************/ if (gfp->psymodel == PSY_NSPSYTUNE) { if (gfp->VBR == vbr_off || gfp->VBR == vbr_abr) { static FLOAT fircoef[9] = { -0.0207887 * 5, -0.0378413 * 5, -0.0432472 * 5, -0.031183 * 5, 7.79609e-18 * 5, 0.0467745 * 5, 0.10091 * 5, 0.151365 * 5, 0.187098 * 5 }; int i; FLOAT f; for (i = 0; i < 18; i++) gfc->nsPsy.pefirbuf[i] = gfc->nsPsy.pefirbuf[i + 1]; f = 0.0; for (gr = 0; gr < gfc->mode_gr; gr++) for (ch = 0; ch < gfc->channels_out; ch++) f += (*pe_use)[gr][ch]; gfc->nsPsy.pefirbuf[18] = f; f = gfc->nsPsy.pefirbuf[9]; for (i = 0; i < 9; i++) f += (gfc->nsPsy.pefirbuf[i] + gfc->nsPsy.pefirbuf[18 - i]) * fircoef[i]; f = (670 * 5 * gfc->mode_gr * gfc->channels_out) / f; for (gr = 0; gr < gfc->mode_gr; gr++) { for (ch = 0; ch < gfc->channels_out; ch++) { (*pe_use)[gr][ch] *= f; } } } } switch (gfp->VBR) { default: case vbr_off: CBR_iteration_loop(gfp, *pe_use, ms_ener_ratio, *masking); break; case vbr_mt: case vbr_rh: case vbr_mtrh: VBR_iteration_loop(gfp, *pe_use, ms_ener_ratio, *masking); break; case vbr_abr: ABR_iteration_loop(gfp, *pe_use, ms_ener_ratio, *masking); break; } /**************************************** * Stage 5: bitstream formatting * ****************************************/ /* write the frame to the bitstream */ format_bitstream(gfp); /* copy mp3 bit buffer into array */ mp3count = copy_buffer(gfc, mp3buf, mp3buf_size, 1); if (gfp->bWriteVbrTag) AddVbrFrame(gfp); #if defined(HAVE_GTK) if (gfp->analysis && gfc->pinfo != NULL) { for (ch = 0; ch < gfc->channels_out; ch++) { int j; for (j = 0; j < FFTOFFSET; j++) gfc->pinfo->pcmdata[ch][j] = gfc->pinfo->pcmdata[ch][j + gfp->framesize]; for (j = FFTOFFSET; j < 1600; j++) { gfc->pinfo->pcmdata[ch][j] = inbuf[ch][j - FFTOFFSET]; } } set_frame_pinfo(gfp, *masking); } #endif #ifdef BRHIST updateStats(gfc); #endif return mp3count; }